Polo-like kinase confers MPF autoamplification competence to growing Xenopus oocytes.
نویسندگان
چکیده
During oogenesis, the Xenopus oocyte is blocked in prophase of meiosis I. It becomes competent to resume meiosis in response to progesterone at the end of its growing period (stage VI of oogenesis). Stage IV oocytes contain a store of inactive pre-MPF (Tyr15-phosphorylated Cdc2 bound to cyclin B2); the Cdc25 phosphatase that catalyzes Tyr15 dephosphorylation of Cdc2 is also present. However, the positive feedback loop that allows MPF autoamplification is not functional at this stage of oocyte growth. We report that when cyclin B is overexpressed in stage IV oocytes, MPF autoamplification does not occur and the newly formed cyclin B-Cdc2 complexes are inactivated by Tyr15 phosphorylation, indicating that Myt1 kinase remains active and that Cdc25 is prevented to be activated. Plx1 kinase (or polo-like kinase), which is required for Cdc25 activation and MPF autoamplification in full grown oocytes is not expressed at the protein level in small stage IV oocytes. In order to determine if Plx1 could be the missing regulator that prevents MPF autoamplification, polo kinase was overexpressed in stage IV oocytes. Under these conditions, the MPF-positive feedback loop was restored. Moreover, we show that acquisition of autoamplification competence does not require the Mos/MAPK pathway.
منابع مشابه
Phosphorylation of ARPP19 by protein kinase A prevents meiosis resumption in Xenopus oocytes
During oogenesis, oocytes are arrested in prophase and resume meiosis by activating the kinase Cdk1 upon hormonal stimulation. In all vertebrates, release from prophase arrest relies on protein kinase A (PKA) downregulation and on the dephosphorylation of a long sought but still unidentified substrate. Here we show that ARPP19 is the PKA substrate whose phosphorylation at serine 109 is necessar...
متن کاملMeiotic cell cycle in Xenopus oocytes is independent of cdk2 kinase.
In vertebrates, M phase-promoting factor (MPF), a universal G2/M regulator in eukaryotic cells, drives meiotic maturation of oocytes, while cytostatic factor (CSF) arrests mature oocytes at metaphase II until fertilization. Cdk2 kinase, a G1/S regulator in higher eukaryotic cells, is activated during meiotic maturation of Xenopus oocytes and, like Mos (an essential component of CSF), is propose...
متن کاملRoles of Greatwall kinase in the regulation of cdc25 phosphatase.
We previously reported that immunodepletion of Greatwall kinase prevents Xenopus egg extracts from entering or maintaining M phase due to the accumulation of inhibitory phosphorylations on Thr14 and Tyr15 of Cdc2. M phase-promoting factor (MPF) in turn activates Greatwall, implying that Greatwall participates in an MPF autoregulatory loop. We show here that activated Greatwall both accelerates ...
متن کاملIn vivo regulation of MPF in Xenopus oocytes.
Entry into M phase in the eukaryotic cell cycle is controlled by the oscillating activity of MPF. The active component of MPF is now known to be the p34cdc2 protein kinase originally found in yeast. The p34cdc2 protein kinase displays a characteristic M-phase-specific histone H1 kinase activity when it interacts with cyclins, which are proteins that oscillate through the cell cycle and are thou...
متن کاملPhosphatase 2A and polo kinase, two antagonistic regulators of cdc25 activation and MPF auto-amplification.
The auto-catalytic activation of the cyclin-dependent kinase Cdc2 or MPF (M-phase promoting factor) is an irreversible process responsible for the entry into M phase. In Xenopus oocyte, a positive feed-back loop between Cdc2 kinase and its activating phosphatase Cdc25 allows the abrupt activation of MPF and the entry into the first meiotic division. We have studied the Cdc2/Cdc25 feed-back loop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 131 7 شماره
صفحات -
تاریخ انتشار 2004